Zum Titel springen


Biomedical Engineering, Joint Master, Spezialisierter Master

Master UH - Master FH

Fachhochschule Nordwestschweiz FHNW

Universität Basel UNIBAS


Allschwil (BL)




Universitäre Hochschulen UH - Fachhochschulen FH

Zeitliche Beanspruchung



Natur, Naturwissenschaften


Biomedizinische Wissenschaften und Technologie


6.540.5.4 - 7.540.15.0

Aktualisiert 30.05.2024


Beschreibung des Angebots

The Master of Science degree is a postgraduate degree that requires a successfully completed Bachelor’s program. The Specialized Master’s degree program Biomedical Engineering awards 120 credit points of the European Credit Transfer System (ECTS).

The Biomedical Engineering specialisation empowers diagnostics and therapy based on technology and engineering. This degree is a joint degree between FHNW School of Life Sciences and University of Basel.

Biomedical Engineering is a rapidly developing new discipline that applies engineering tools and methods to medical diagnostics and treatments. Students pursuing our program can specialize in a broad range of subdisciplines including implants and regenerative technologies, image acquisition and therapies, computer-assisted surgery, or diagnostic and therapeutic technologies. This interdisciplinary education in medical devices for diagnostic and therapeutic interventions puts our students into a privileged position to develop a career in a thriving academic or industrial environment.

Focal area of teaching and research

This Joint Degree Master in Biomedical Engineering is offered by the School of Life Sciences of the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) and the Medical Faculty of the University of Basel. The program takes place on site at the School of Life Sciences in Muttenz and at the University Campuses in Allschwil and Basel.

The contents of the first semester of this program strongly depends on the students’ individual background. Thus, students with a medical background undergo a deep dive into basic engineering courses. Inversely, students with an engineering/natural science backgrounds are exposed to the fundamentals of human medicine. In parallel to this tailored education, early fundamentals of biomedical engineering are introduced.

The second semester of this program deepens the general biomedical engineering skills and knowledge up to the master’s level and sets a focus to one of two study tracks: either Medical System Engineering or Biomaterial Science and Engineering. This is accompanied by a wide range of elective modules of biomedical engineering.

During the third semester, the tracks progress towards our specialization foci, including Computer Assisted Surgery, Image Acquisition and Analysis, Diagnostic and Therapeutic Technologies, and Implants and Regenerative Technologies. All specializations are complemented with a wide range of elective courses. The third semester culminates with hands-on training in the form of a semester thesis, lab sessions and practical training. As a result, our students acquire the required skillset to move forward towards the Master’s Thesis in the last semester.

Thus, the fourth semester is devoted to the Master’s Thesis, whereby the students work independently on a scientific project of their choice, supervised by our Professors. The Thesis culminates with a public defense.

Students graduating within this program will obtain a joint degree as «Master of Science in Biomedical Engineering».

Students can choose during their studies between two tracks (2nd Semester) and four specializations (3rd Semester): 

Track I - Medical System Engineering: This track puts the focus on medical devices using electronics and digitalization, covering topics from the area of signal acquisition and processing, control theory, and includes general aspects of modelling and simulation in biomedical engineering. The track pushes the knowledge toward applications in diagnostics, therapeutics, computer-assisted surgeries, and imaging systems.  This track sets the stage for 3rd semester specializations in computer assisted surgery, image acquisition and analysis, or diagnostic and therapeutic technologies. 

Track II – Biomaterials Science and Engineering: This track puts the focus on medical devices and technologies involving mechanical or biological materials for diagnostic or therapeutic purposes. The track provides knowledge and skills in material sciences, fabrication technologies in particular with biological materials, all supplemented with relevant aspects in tissue regeneration technologies. This track maps out the 3rd semester specializations in implants, regenerative technology and diagnostic and therapeutic technology. 

Specialization A: Computer Assisted Surgery: Students, in the module Computer-Assisted Surgery, gain a comprehensive understanding of the fundamentals to develop new and existing methods for surgeons and medical staff in the complex environment of operating rooms in hospitals such as the principles of surgical navigation and robotic systems, computer-assisted surgery planning, modelling, simulation and execution by smart tools, robots and visualization systems. Course topics include:

  • Computer-assisted surgery
  • Medical Robotics
  • MR Imaging
  • Deep Learning 

Specialization B: Image Acquisition and Analysis: This module will discuss advanced imaging techniques like magnetic resonance, ultrasound, X-ray, computer tomography, infrared photography, ...), applied in dental offices, hospitals and forensic institutes. Students will gain insights into the development and application of medical imaging techniques and image analysis and using AI (artificial intelligence) to improve therapy monitoring (ie radiotherapy), for personalized adaptive therapy or for automated approaches in image acquisition and analysis in hospitals or forensics. Courses topics include:

  • Digital Dentistry
  • Magnetic Resonance Imaging
  • Forensic Imaging Methods

Specialization C: Diagnostic and Therapeutic Technologies: This specialization deepens electronic and digital medical devices for specific clinical applications such as neural and deep brain stimulation, brain computer interfaces, hearing diagnostics (audiology), hearing rehabilitation (e.g cochlear implants and hearing aids), and biomechanical tracking systems for functional anatomy and gait analysis. Students learn about diagnostics, bioelectrical and other natural signal sources, digital signal analysis, and therapeutic stimulations. Courses topics include:

  • Biomedical Acoustics
  • Neurotechnologies
  • Clinical Biomechanics

Specialization D: Implants and Regenerative Technologies: This module focuses on the design and manufacturing of medical implants and surgical tools, considering their bulk and surface properties as well as on the characterization of tissues.

It covers the broad range of design, additive and conventional manufacturing and characterization starting at macroscopic scale to reflect the device properties, down to the atomic level, to identify the associations between the nanostructure and function. Regenerative medicine will foster and stimulate interdisciplinary scientific discoveries and the development of advanced therapeutic strategies. Topics include: biomaterial-based control of stem cell function, engineering technologies for tissue and smart implant manufacturing like additive manufacturing and bioprinting, and translational challenges towards industrial exploitation, regulatory requirements and clinical implementation. Courses topics include:

  • Regenerative Surgery
  • Materials Science and Biomaterials
  • Characterizing Materials in Medicine (biocompatibility, micro- and nanostructuring)
  • Biointerface Engineering
  • Implant Design and Manufacturing

Each specialization is accompanied by a certain number of elective courses, either within the same field of specializations or from any other fields, depending on students individual interests. 

Master studies

The Master of Science degree is a postgraduate degree that requires a successfully completed Bachelor’s program. The Specialized Master’s degree program Biomedical Engineering awards 90 credit points of the European Credit Transfer System (ECTS) and is a so called “mono-course” consisting of only one core subject.

Aufbau der Ausbildung

120 ECTS Points

One ECTS credit point corresponds to 30 working hours for an average student.

Curriculum ECTS
Biomedical Engineering
Biomedical Basics or Engineering Basics (1) 21
Biomedical Engineering Basics 21
Biomedical Engineering Electives 9
Medical Systems Engineering or Biomaterials Sciences and Engineering 9
Computer- and Robot- Assisted Medicine or Image Acquisition and Analysis or Diagnostic and Therapeutic Technologies or Implants and Regenerative Technologies 9
Electives from Computer Assisted Surgery, Image Acquisition and Analysis, Diagnostic and Therapeutic Technologies, Implants and Regenerative Technologies 9
Project Work and Practical Skills 12
Master‘s thesis 25
Master’s examination 5
Total 120

(1) The respective module allocation will be communicated to each student with their admission. Depending on the bachelor/ background of the student it is also possible that, instead of one module, a selected set of courses of both modules is allocated to the student.

Link zum Aufbau der Ausbildung


There is no possibility to combine this Master with other Master programs.



Information on admission requirements: Study regulations

Binding information under: unibas.ch/admission

Link zur Zulassung


Application under http://www.unibas.ch/application; the application fee amounts to CHF 100.-. Application deadline for the fall semester is April 30. Students of the University of Basel see:unibas.ch/Rueckmelden/Masterstudium. Application dead­line is published there.


CHF 850.- per semester

Individual costs of living etc. are not included. A laptop computer is required for a successful completion of the courses. In addition, there are expenses for registration fee, teaching materials, materials and costs for accommodation and meals for three-week block courses.

Universität Basel UNIBAS > Medizinische Fakultät


Die Anmeldegebühr von CHF 100.- wird nicht rückerstattet, falls das Studium nicht aufgenommen wird.
Begründete verspätete Anmeldungen erfordern eine Zusatzgebühr von CHF 150.-


Pro Semester (auch für Prüfungssemester) ist eine Pauschale von CHF 850.- (+ CHF 10.- freiwilliger Beitrag für die Studierendenschaft skuba) einzuzahlen.
Hinzu kommen je nach Fachrichtung noch Auslagen für Studienliteratur sowie Lebenshaltungskosten.


  • Master Fachhochschule FH
  • Master Universitäre Hochschule UH

Joint Degree Master of Science FHNW und Universität Basel in Life Siences Biomedical Engineering


A Master of Science in Biomedical Engineering prepares students for a doctorate in Biomedical Engineering but this is not a prerequisite. The doctoral studies last approximately three years. The acceptance of a doctoral thesis is followed by an oral examination covering the postgraduate studies in the doctoral subject.

Praktische Hinweise

Ort / Adresse

  • Allschwil (BL)

Universität Basel
Department of Biomedical Engineering
Hegenheimermattweg 167b
4123 Allschwil

Zeitlicher Ablauf


The program begins in the fall semester.


The full-time Master’s program generally takes four semesters, which requires 120ECTS credit points. There are no restrictions on the duration of study. Part-time enrollment increases the duration of the program accordingly.

Zeitliche Beanspruchung

  • Vollzeit


  • Englisch

The courses are generally taught in English. The Master’s thesis is to be written in English.


Guidelines and regulations see msc.dbe.unibas.ch

Tag der offenen Tür

Im Januar findet ein Infotag für Schulklassen statt.
Jeweils im September stellen sich die einzelnen Fächer an den Informationsabenden für Maturand/innen ("Live aus der Uni Basel") vor.
Weitere Informationen



Auskünfte / Kontakt

Universität Basel
Department of Biomedical Engineering
Hegenheimermattweg 167b/c
4123 Allschwil
Tel: +41 61 207 54 05
Email: master-dbe@unibas.ch
URL: https://biomedicalengineering.ch/

Questions regarding the study of Biomedical Engineering can be discussed personally at the Student Administration Office of the Department of Biomedical Engineering (registration via e-mail or phone): www.dbe.unibas.ch, e-mail: master-dbe@unibas.ch

Programme Head FHNW

Prof. Dr. David Hradetzkytzky
Telephone +41 61 228 54 58 (direct)
e-mail david.hradetzky@fhnw.ch
School of Life Sciences FHNW
Institute for Medical Engineering and Medical Informatics
Hofackerstrasse 30
4132 Muttenz